
HDF5-Based I/O Optimization for
Extragalactic HI Data Pipeline of FAST

Yiming Ji1, Ce Yu1, Jian Xiao1(B), Shanjiang Tang1, Hao Wang1,
and Bo Zhang2

1 College of Intelligence and Computing, Tianjin University, Tianjin, China
{jiym,yuce,xiaojian,tashj,imwh}@tju.edu.cn

2 CAS Key Laboratory of FAST, NAOC, Chinese Academy of Sciences,
Beijing, China

zhangbo@nao.cas.cn

Abstract. The Five-hundred-meter Aperture Spherical Radio Tele-
scope (FAST), which is the largest single-dish radio telescope in the
world, has been producing a very large data volume with high speed.
So it requires a high performance data pipeline to covert the huge raw
observed data to science data product. However, the existing solutions
of pipelines widely used in radio data processing cannot tackle this sit-
uation efficiently. The paper proposes a pipeline architecture for FAST
based on HDF5 format and several I/O optimization strategies. First,
we design the workflow engine driving the various tasks efficiently in the
pipeline; second, we design a common radio data storage specification
on the top of HDF5 format, and also developed a fast converter to map
the original FITS format to the new HDF5 format; third, we apply sev-
eral concrete strategies to optimize the I/O operations, including chunks
storage, parallel reading/writing, on-demand dump, and stream process
etc. In the experiment of processing 700 GB of FAST data, the results
show that HDF5 based data structure without other optimizations was
1.7 times faster than original FITS format. If chunk storage and paral-
lel I/O optimization are applied, the overall performance can reach 4.5
times as the original one. Moreover, due to the good expansibility and
flexibility, our solution of FAST pipeline can be adapted to other radio
telescopes.

Keywords: FAST · FITS · HDF5 · Pipeline in parallel · High
performance I/O

1 Introduction

Data pipeline, a key procedure for modern observational astronomy, is to convert
the raw observed data to science product, which astronomers can use directly
to make new discoveries and theoretical testing. As the continuous improvement
of capacity and resolution of telescopes, the observed data volume explosively
increases. So the performance of astronomical data pipeline becomes one of the
c© Springer Nature Switzerland AG 2020
S. Wen et al. (Eds.): ICA3PP 2019, LNCS 11945, pp. 656–672, 2020.
https://doi.org/10.1007/978-3-030-38961-1_55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38961-1_55&domain=pdf
https://doi.org/10.1007/978-3-030-38961-1_55


HDF5-Based I/O Optimization for Extragalactic HI Data Pipeline of FAST 657

Fig. 1. The main steps of pipeline

biggest challenges for modern large telescopes. For example, the Five-hundred-
meter Aperture Spherical Radio Telescope (FAST) [15] in Guizhou, China, is
the largest single-dish radio telescope in the world. Currently, typical data rate
of FAST is as high as 3 GB/s. FAST will output about 10 TB of raw data
per hour. Its tasks include neutral hydrogen survey and pulsar detection, which
will record a huge amount of data. Meanwhile, the 19-beam receiver, the most
frequently used receiving system of FAST [23], will produce 19 times data size
as the single beam receiver. These observed data provides more opportunities
to new scientific discoveries, meanwhile it also brings unprecedented pressure to
the traditional solution of data pipeline.

Figure 1 shows a classical work flow of radio data pipeline. It is usually divided
into four levels. Level 1 is the data format conversion, converting the original
format to an inner format throughout the whole pipeline. Level 2 is the necessary
calibrations to eliminate the noise from the universe, the earth and the device
itself to a tolerable level, including flux calibration, bandpass correction, baseline
subtraction, and radio frequency interference (RFI) mitigation [8] etc. The main
purpose of level 3 is to generate the data cube for extracting signals [18]. Level 4
refers to publish the data product to astronomers for further research. For FAST,
the process flow is almost the same as Fig. 1. In terms of the overall architecture
of pipeline, data exchange between different steps is the efficiency bottleneck to
process data.

On the other hand, unlike optical telescopes, the radio telescope have a very
wide frequency coverage, so each radio telescope has its unique physical features,
though they can share a relative common process flow, but the details of each
steps may be quite different. Therefore, there is none existing universal solution



658 Y. Ji et al.

or mature software for various radio telescopes. For example, CASA [14] aims
to adapt all radio telescopes, but is used mainly by VLA and ALMA until now,
which both are radio array or similar structure instead of single dish. CLASS [21]
is designed for (sub-)millimeter single dishes. CLASS does not support parallel
processing because it only serves small and medium telescopes. Therefore, it is
not suitable for processing tasks with large amounts of data.

There are several research works aiming to improve the data pipeline effi-
ciency. Data Activated Liu Graph Engine (DALiuGE) is an execution framework
for processing large astronomical datasets at a scale required by the Square Kilo-
metre Array Phase 1 (SKA1) [27]. It can be considered as one representation of
next generation pipeline architectures, but is more like a task deployment and
scheduling tool, lack of consideration of data layout and exchange. In addition,
AST3 daemon [10,28] is a light-weight pipeline engine for Antarctic Schmidt
Telescopes, and it has been running in Antarctic dome A for 5 years normally.
While AST3 also lacks of support for cluster environment, which is necessary for
FAST.

At present, most of existing solutions still use FITS file as the default data
format during the data processing [16,26]. FITS is a traditional astronomical
data format with fixed format specifications and complex content packaging.
According to our experiment, FITS related I/O operations take roughly 25%–
30% of the whole process. Obviously the I/O efficiency has become one of bottle-
necks of the modern radio data pipelines. Faced with rapidly increasing volume
of data, the FITS performance seems to be inadequate. Motivated by data vol-
umes, Hierarchical Data Format version 5 (HDF5) [9] has been implemented
for the LOFAR radio telescope [1], the CCAT telescope [22], and the CHIME
pathfinder [13]. Compared with FITS format, HDF5 format has more concise
structure. So it’s possible to improve I/O efficiency by changing the layout of
data in HDF5 format. In addition, the pipeline has separate processing steps
and the intermediate results are saved frequently. The large volume of FAST’s
data makes I/O cost become a vital factor impacting the overall performance.
Therefore, reducing I/O time can improve efficiency significantly.

So in order to process FAST’s continuous huge output data with high speed
and accuracy, an end-to-end solution including parallel pipeline engine, fast inner
data exchange format, high speed I/O interface, and deeply optimized algorithm
of each steps is necessary. In this paper, we focus on the common aspects of
building the qualified pipeline for FAST, that is providing an optimized pipeline
framework with high performance I/O support. Various calibration algorithms,
RFI mitigation and data cube generation modules can be easily integrated into
the pipeline through the interface, and all of them can exchange data with high
efficiency within the pipeline. The work content of this paper is described as fol-
lows. We propose the data layout specification for pipeline on the top of HDF5
format, and also develop a fast converter to map the original FITS format to
the new HDF5 format. In addition, we apply several concrete strategies to opti-
mize the I/O operations, including chunks storage, parallel reading/writing, on-
demand dump, and stream process etc. Furthermore, we implement the FAST
pipeline engine, which supports concurrency, real-time monitoring and error



HDF5-Based I/O Optimization for Extragalactic HI Data Pipeline of FAST 659

reporting, in-memory execution, and asynchronous storage of resulting data. In
the experiment of processing 700 GB of FAST data, the results show that merely
HDF5-based data structure is 1.7 times faster than original FITS format. With
chunk storage and parallel I/O optimization, the overall performance can be 4.5
times as the original one. The key contributions are:

– We design a parallel data pipeline engine to tackle FAST huge data volume,
and it can efficiently drive the pipeline to process large intermediate result in
stream style.

– We define a general data layout for single dish radio data based on HDF5,
which is used for fast data exchange between various tasks of pipeline.

– We explore several optimization strategies such as chunks storage, parallel
I/O, etc. We also integrate main processing steps into the pipeline, and make
a comprehensive evaluation based on real observed data.

This article is organized as follows. In Sect. 2, we provide some related work,
including the characteristics of FITS and HDF5 file formats, the performance
of some radio telescope pipelines, and I/O method of pipelines. In Sect. 3, we
present a description of our overall work; we also present a mapping of FAST’s
raw data (FITS) into intermediate data (HDF5) and the details of the pipeline.
Section 4 gives the experimental results to verify the efficiency of our proposed
format and the concrete implementation of pipeline. Some general summaries,
practical applications for FAST and possible future extensions are given in
Sect. 5.

2 Related Work

In this section, we discuss related work from three aspects: the format of astro-
nomical data, the pipeline of radio telescopes and file I/O.

2.1 Data Format

FITS Model. The Flexible Image Transport System (FITS) has enjoyed sev-
eral decades of usage among the field of Astronomy [16], and it was stipulated

Table 1. Example of FITS HDU

Key = Value/comment

SIMPLE = T/File does confirm to FITS standard

BITPIX = 16/ Number of bits per data pixel

NAXIS = 2/Number of data axes

NAXIS1 = 320/Number of pixels along the fastest changing axis

NAXIS2 = 512/The number of pixels along the sub-fast changing axis

END



660 Y. Ji et al.

Fig. 2. Example of HDF5 object [17]

as the unified standard format for data transmission and exchange between dif-
ferent observatories established by the International Astronomical Union (IAU)
in 1982.

FITS file consists of a set of header data units (HDUs), which are ASCII head-
ers followed by consecutive blocks of data (binary or ASCII encoding). HDUs
contain some descriptive variables, whose format is “Key = Value/Comment”.
There are some indispensable keywords listed in Table 1, such as SIMPLE, BIT-
PIX, NAXIS, NAXISn and END. In general, there are other keywords indicating
related information of observation data, such as date, telescope, observer and so
on. In astronomy, FITS is a classical format for pictorial data and spectral data.

HDF5 Model. The hierarchical data format 5 (HDF5) is the latest among the
series. HDF5 consists of data format specification and library implementation.
Compared with the old version of HDF, Its related support has been extended.
In addition, its hierarchical structure and supported libraries can reflect the
advantages of storage, reading and writing [7].

HDF5 format file is organized in a hierarchical structure, which contains
three main elements: Dataset, Group and Attribute.

– Dataset: Multidimensional arrays of data elements and support for metadata.
– Group: The grouping structure contains instances of zero or more objects,

groups or datasets; it’s supported for metadata.
– Attribute: User-defined metadata information, which can be attached to

Datasets and Groups.

The Group is the root of HDF5 object. A separate HDF5 object can perform
as its substructure. The dataset mainly stores data array, whose dimensions can



HDF5-Based I/O Optimization for Extragalactic HI Data Pipeline of FAST 661

be set from 1 to N (any positive integer). At the same time, the attributes can be
linked to different nodes of HDF5 object. Attributes annotate temperature, time
and other information defined by users. Figure 2 shows hierarchical structure of
HDF5 object and relation of Groups, Datasets and Attributes.

2.2 Pipelines Introduction

Pipeline is one kind of dataflow computation model, which was initially pro-
posed [19] to express programs as Directed Acyclic Graphs (DAG), where the
vertices are the stateless computational tasks that compose the program, and
edges connect the output of one task with the input of another. In astronomy,
the pipeline implements the data processing algorithm in the order of dataflow.
Each step of the pipeline is independent. The output of the previous step will
flow into the next step.

At present, many telescopes all over the world have their own data processing
pipelines. Davis [5,6] proposed the ALMA prototype science pipeline in 2004.
As of 2014, it had already supported distributed processing. The shooting speed
of ALMA determines the pipeline speed to be 6M/s, which is not suitable for
massive data processing of FAST.

The Transients Key Science Project (TKP) [24] is developed for LOFAR and
can study all variable sources detected by LOFAR. Its functions include the study
of transient and variable low-frequency radio sources with an extremely broad
science case ranging from relativistic jet sources to pulsars, exoplanets, flare
stars, radio bursts at cosmological distances, the identification of gravitational
wave sources and even SETI. As Lofar and FAST have different research goals,
TKP’s approach cannot be transplanted into FAST’s supporting environment.

The Very Large Telescope (VLT) [3] is a collection of eleven instruments. For
each of them, European Southern Observatory (ESO) provides automatic data
reduction facilities in the form of instrument pipelines developed in collaboration
with the instrument consortia. The Multi Unit Spectroscopic Explorer (MUSE,
Bacon et al. [2]) is one of four second generation instruments being built for the
ESO VLT. MUSE can process 150 GB of raw data per night and support two
modes, online and offline. Online mode focuses on timeliness, while offline mode
tries to optimize results and minimize user interaction.

2.3 File I/O

At present, the data file performs as the I/O unit of FAST pipeline. To optimize
the I/O of FAST pipeline, this paper provides several studies that concentrate on
optimizing the parallel file-I/O performance of HPC applications. Y.Chen and
R.Thakur proposed libraries and parallel file systems respectively, and exploit
advancements in storage technologies [4,25]. This system has some constraints on
files. It require data to be stored in its own file system. The method is not suitable
for FAST pipeline because specific file systems or libraries are not suitable for
FAST neutral hydrogen data. Other optimization techniques include exploiting
access patterns to assist file system prefetching, data sieving, and caching [12],



662 Y. Ji et al.

overlapping computation with I/O [11], and employing asynchronous prefetching
[20]. FAST pipeline is a fixed process that does the same execution to each file
and the same file is not read repeatedly. Thus data sieving, caching, overlapping
computation and so on cannot provide FAST pipeline with improvement.

From preceding part of this section, both of the formats are used in the
astronomy field. By contrast, the simplicity and flexibility of the HDF5 format
show an advantage. With HDF5 being used as intermediate data format to
replace FITS in the pipeline, I/O overhead will be reduced. As a result, overall
efficiency is improved. In addition, concurrent processing of pipeline provides
favor to process massive FAST data. By the analysis of the existing work, no
method can fully satisfy the performance demand of FAST data processing.
Based on the technical environment, the paper proposes the implementation of
workflow engine and optimization strategy for FAST pipeline.

3 HDF5-Based I/O Optimization in Pipeline

The Fig. 3 shows the architecture of the FAST data pipeline with HDF5-based
I/O optimization. The whole solution includes a work flow engine to manage the
execution of pipeline, a highly optimized I/O interface to read/write intermediate
data during the process, the HDF5 data model of FAST, and a dedicated mapper
for converting raw data from FITS to HDF5 format.

The data produced by the FAST is recorded in FITS files. Since the FITS
format is a multi-layer encapsulated table structure, the process of parsing FITS
files takes much time. HDF5 format is chosen as the alternative to reduce the
overhead of parsing FITS. In order to maximize compatibility with existing astro-
nomical software and share data, we keep the archived raw files in FITS format
and use HDF5 format as an intermediate format to improve I/O performance.
HDF5 has two distinct characteristics: hierarchical structure and attributes.
Hierarchical structure highlights the hierarchy and ownership among different
parts. In our proposed HDF5 specification, the data is grouped according to
the scanning sequence or polarization number, which makes it easier for pro-
grammers and astronomers to clarify the data content. It’s straightforward to
determine the location of the target data according to the hierarchy. In addition,
the attributes is added to the specified parts of the HDF5 object. This combi-
nation determines its self-explanatory advantages for each grouping pair. By
adding attributes, it’s visual to specify the content of the object. There are some
descriptive variables like time, shooting equipment, shooting status and so on,
which need to be recorded as float or string variables. It’s unnecessary to create
new datasets. Attributes work in this situation, which indicate these variables
in the corresponding location. In this way, the efficiency has been saved and the
relationship has been described clearly. Compared with the traditional format
FITS, our proposed data layout based on HDF5 performs better structurally.



HDF5-Based I/O Optimization for Extragalactic HI Data Pipeline of FAST 663

Fig. 3. An overview of the design, divided into two parts – a and b

3.1 Transformation and Mapping from FITS to HDF5

For all the content contained in the FITS file, we design the transformation
and mapping from FITS to HDF5, showed in Fig. 4. In the raw FITS file, Pri-
maryHDU stores the descriptive information of FAST data, and the observed
content are independently stored in binTableHDUs. The size of binTableHDU
is 2048(rows) × 21(columns). Each row is the scanning serial number accord-
ing to time. The first 20 columns record the time, coordinates, external condi-
tions, etc. The 21st column named “DATA” is a two-dimensional array (65536
× 4). 65536 is the number of channels, and 4 is the polarization serial num-
ber. As shown in the Fig. 4, the entire HDF5 object contains only one group as
its root directory. The original FITS file’s PrimaryHDU is transformed into a
set of attributes directly connected to the root directory, which includes BIT-
PIX, NAXIS, EXTEND, ORIGIN, DATE. Then 2048 datasets are corresponding
to the “DATA” columns of FITS binTableHDUs. Each binTableHDU’s first 20
columns are turned into a set of attributes for each dataset. In the intermediate
data, attributes contain the following information: frequency of observation cen-
ter, bandwidth, number of spectral channels, start/end time of data recording
in the file, Angle of the telescope (azimuth Angle and zenith Angle) after the
correction of heliocentric system, and information about the definition standard
of coordinate reference system.

3.2 HDF5 Optimization Strategies

Outside of the transformation from FITS to HDF5, there are some improvement
on the underlying field. HDF5 data is stored linearly in memory by default, so



664 Y. Ji et al.

Fig. 4. The details of mapping FITS to HDF5

the reading process has to go through all the content to find the target. If a
smaller sub-block is the target, accessing parts outside the block is invalid. In
order to avoid these invalid operations, the high frequency accessed areas are
supposed to be obtained directly.

In the process of converting data from FITS to HDF5, we specify the dataset
as a two-dimensional float array. Each dataset in HDF5 data uses a type system
similar to the Numpy module in Python. At the time of reading and storing,
the concrete array is processed as the Numpy array, and the datatype has been
mapped to the dtype of Numpy.

Chunks Storage. A two-dimensional array has two dimensions in the mathe-
matical sense, but virtually all the dimensional data in the computer’s memory
is stored in a linear continuum. Sequential storage is suitable for reading all data
at one time. However, when we only need to read one or more blocks in many
cases, such as reading the sub-dataset [2048 : 8192, 0 : 2] from an array of 65536
× 4, the program will read from beginning to end under sequential storage. There
will be a lot of overhead outside the target region. It indicates that sequential
storage does not match most sub-block reading directly. By default, the HDF5
datasets are sequentially stored, which causes unnecessary I/O cost for pipeline.

For the datasets, the N-dimensional shape is specified in the chunks storge,
which fits the access mode best. When data needs to be written into disk, it will
be split into blocks of the specified shape and written into memory in blocks.
These blocks are stored in the file whose coordinates are indexed by a B-tree.
Because pipeline involves a large number of array readings, and the size of sub-
block is determined by the algorithm in the pipeline. The pipeline proposed in
this paper supports both the default size and manually specifying the size.



HDF5-Based I/O Optimization for Extragalactic HI Data Pipeline of FAST 665

In-memory Cache. Pipeline involves many times data reading and writing. If
each reading or writing is directly sent to disk, the overall running time will be
spent primarily on reading and writing rather than computing. To overcome this
disadvantage, the data file is kept in the memory until it is processed completely.
By this strategy, the pipeline can fetch target data from memory and every step
can exchange the data directly. As an HDF5 object is generated, new space
in memory will be created to maintain it. As the in-memory file is closed, its
contents are saved to disk. As long as the entire file is put into memory, the
pipeline process only needs to read and write to the disk once per process.
Subsequent data reading and writing, attributes creation, and other operations
needn’t occupy disk I/O at all.

Data Operation in Parallel. According to the above data specification, each
file contains 2048 datasets, and each dataset is an array of 65536 × 4. Parallel
I/O for data of this size is a great way to increase efficiency. Common parallel
operations are multi-threaded and multi-process. In our early exploration exper-
iments, thread-level concurrency for HDF5 object takes a lot of technical devel-
opment. This will shift the focus of our research and it’s uncertain whether we
can meet our expectations by this way. And using HDF5 in multi-threaded pro-
grams does not improve efficiency. If multi-process is used directly to manipulate
a single HDF5 file, it is easy to conflict with the process of the pipeline hierar-
chy and the structure appears redundant. Considering the above points, Message
Passing Interface (MPI) is a superior choice. In the MPI program environment,
one HDF5 object can be accessed by multiple processes. This method supports
frequent communication between processes and collection of final results. The
process created for each HDF5 file is coordinated by the MPI library and does
not conflict with the upper process. In the process, we specify the MPI driver
and an MPI communicator. The MPI communicator is responsible for commu-
nication between different processes. For example, the process keeping a single
data file creates 4 sub-processes. Each sub-process is responsible for calculating
one chunk of data, so that four sub-blocks are computed simultaneously. In the-
ory, the performance of this scheme is four times better than that of the serial
scheme with the same computing power.

3.3 The Implementation of FAST Pipeline

Our work is based on the real neutral hydrogen data of FAST. FAST pipeline in
parallel is implemented based on the proposed optimization details above. The
main function of the pipeline is to process FAST raw data and archive processed
data. The sub-systems of the pipeline can be described as follows:

– Data processing system: the pipeline starts a specified number of processes,
each responsible for one dataflow.

– Data I/O system: the pipeline’s data read-write system is responsible for
reading data files into memory and writing them to disk. When the raw data



666 Y. Ji et al.

files are read for the first time, they will be converted to the designed HDF5
specification.

– Fault-tolerant system: the pipeline’s fault-tolerant system logs all exceptions
occurring in the middle of the process and re-executes from this step.

– Interactive system: the pipeline’s interactive system displays the current total
amount of unprocessed tasks in real time, and the current task progress per-
centage of each process.

As showed in part a of Fig. 3, the result of FAST surveying is stored in FITS
files disk in real time. When the pipeline starts, it creates a certain number of
processes to monitor FITS files disk. If the processes are more than the files, the
existing files enter the corresponding number of processes, and other processes
are idle. Then the newly generated files enter the waiting processes. If the pro-
cesses are less than the files, all the processes start working and some files enter
the task queue. Processes in working mode are locked. The only access to the
processes is the exception handling and enforcement commands issued by the
interacting system. When the task is finished, the process will be unlocked and
load the next task.

In each independent process, flow calibration, bandpass correction, baseline
correction and RFI labeling are conducted in turn. When processed data files
reach to a certain amount, Gridding is executed. The input to the first step
is an in-memory HDF5 data file, and the input to the next step is the output
from the previous step. The pipeline’s data stream is executed entirely in mem-
ory. Typically, each data file requires only one time disk reading into memory,
and I/O of subsequent steps are memory-based. Since the size of a single HDF5
file is 2 GB, the total memory consumption of the pipeline is 2n GB when the
number of processes is n. This trade-off for time efficiency at the expense of phys-
ical memory consumption is reasonable in large scientific projects. According to
the requirements of FAST staff, the results of the intermediate steps should be
backed up and saved. The size and dimensions of the stored data files are the
same as the proposed HDF5 specification. After each step in the process ends,
saving the intermediate results and processing the next step data are executed
in parallel.

If an exception occurs in the pipeline, the exception information will be
written into the log file. And the pipeline will be re-executed from the appropriate
step. Supposing the same exception occurs three times in a row, the task of the
data file will be cleared from the process. Then it loads a new file from the task
queue.

During the execution of the pipeline, the interactive system can display the
total number of tasks in the queue and the schedule of all processes in real time.
At the same time, interactive systems support command operations, such as:
pause, terminate, increase or decrease the process and view the exception logs.



HDF5-Based I/O Optimization for Extragalactic HI Data Pipeline of FAST 667

3.4 Functional Module of the Pipeline

To be used for research, the raw files need to be processed. The pipeline imple-
ments four main FAST data processing algorithms, which are introduced in the
form of modules.

Spectral Data Flow Calibration. The raw data recorded by FAST is pre-
sented in the form of mechanical records, which does not have direct physical
significance. The purpose of flow calibration is to correspond mechanical records
to physical units so that one can measure the flow of celestial sources. There
are two steps among the transformation: first, the mechanical records are con-
verted into the source’s bright temperature Tsource (K), and then the bright
temperature is converted into the source’s physical flow (Jy) through the gain
coefficient.

Bandpass and Baseline Correction. The ultimate goal of spectral obser-
vation is to extract spectral signals from celestial bodies and to measure the
physical information of spectral lines. After the calibration mentioned previ-
ously, the observed data have been corresponded with the actual flow density
of the celestial body. But it have still not met the demand of spectral data
observation, which can be explained by two reasons. Firstly, even for ON/OFF
observations in tracking mode, the calibrated data will inevitably contain the
information of continuous spectrum radiation in the sky; secondly, the frequency
response and time evolution properties of the device itself need to be considered.
We can introduce two vital concepts, bandpass and baseline. Bandpass indicates
the frequency response of the observation instruments. Baseline is the influence
of background continuous spectrum. Correcting baseline and bandpass is to min-
imize the impact of these two factors.

RFI Labeling. Radio astronomical observation faces a huge challenge from
the ubiquitous radio frequency transmission in modern society, such as radio,
mobile communications, satellite signal raking, navigation, military/civilian, var-
ious daily electronic equipment and so on. These radio frequency radiation levels
are often much stronger than the celestial signals measured. Therefore, in order
to map the large-scale sky survey data accurately in the later stage, screen and
mark the radio frequency interference is of great importance during the pre-
processing period.

Gridding. As a data product obtained from sky survey, the three-dimensional
data cube (three dimensions are the right ascension, declination, and the fre-
quency or spectral line velocity) for final analysis needs to have uniform spacing
between the right longitude and the right latitude. Radio data processing process
usually requires Gridding to convert raw data from irregular sampling space to
regular grid space with uniform spacing, so as to carry out scientific research
using scanning data. In the process of FAST data pre-processing, it often needs
to accumulate multiple scans of data before Gridding. When the data can cover
a large area of sky, the Gridding will be carried out.



668 Y. Ji et al.

4 I/O Performance Evaluation

The experimental data was generated during the trial operation of FAST sky
survey on September 18, 2018. The total volume of data is 700 GB, and a single
data file is 2 GB. The experimental environment is a 4-core 8 GB Tencent Cloud
Server.

4.1 Efficient Data Format Conversion

The first step of our approach is transforming FAST raw data from FITS format
to HDF5 format. The size of a single Fast raw data file is 2 GB, and the converted
HDF5 file is 2 GB. The conversion time is 2.91 s, which accounts for a small
proportion in the whole pipeline. Thus the conversion step is assumed to have
no effect on overall efficiency.

4.2 FITS and HDF5 Reading-Writing Comparisons

This paper provides the results for the read-write performance with native FITS
and HDF5. FITS file contains 2048 arrays (65536, 4). The corresponding HDF5
file contains the 2048 datasets to store these arrays. Figure 5a shows the perfor-
mance of reading sub-blocks from it.

Fig. 5. FITS and HDF5 read-write comparisons without other optimizations

The horizontal axis denotes the size factor of the selected block and the
vertical axis denotes the time. The size factor is n, which denotes the actual size
of the array is (2048 × n, 4). As shown in Fig. 5a, when the size of the read
block is small(n < 9), the speed of FITS-based method is faster than that of
HDF5; when n = 9, the reading performance of both them is equal; when the
block is larger (n > 9), the HDF5-based method is faster. When the whole arrays
(65536 × 4) are read, the speed of HDF5-based method is 1.7 times as that of
FITS. HDF5 performs better than FITS in large arrays reading. FITS format



HDF5-Based I/O Optimization for Extragalactic HI Data Pipeline of FAST 669

encapsulates data in a more complex way. The tree structure of HDF5 format is
beneficial to the retrieval of intersection components.

Figure 5b shows the performance of writing 2048 different size arrays into
FITS and HDF5. The sizes of new arrays are (2048 × n, 4). The horizontal axis
denotes n and the vertical axis denotes time. As shown in Fig. 5a, HDF5-based
method consistently performs better than FITS-based when writing new arrays,
whose size is from (2048 × 4) to (65536 × 4). When the size is (65536 × 4), the
speed of HDF5-based method is 1.7 times as that of FITS.

4.3 HDF5 Performance with Different Chunks

Based on the data layout we specified, this paper studies the performance of
different chunks storage schemes with the file driver of HDF5. Figure 6 shows
the test results of reading different size of blocks under four chunks schemes. The
four schemes are respectively chunks-free, automatic chunks (chunks = TRUE),
chunks = (4096, 2), and chunks = (32768, 2). These four schemes set the size
of chunks of dataset in memory. It has been proved that in this experiment, the
scheme of automatic chunks splits the dataset into chunks of size (4096, 1).

When chunks of the dataset are not specified (the line marked with triangles
in the figure), the time of reading an array of (x, 4) is less than that of (x, 1),
(x, 2) or (x, 3). This is because the default sequential storage is on the basis
of row order. When chunks = True, the system automatically sets the chunks
of dataset to (4096, 1). Reading sub-blocks of (4096,1), (8192, 1), (32768, 1)
and (65536, 1) performs better than others. When chunks = (4096, 2), reading
sub-blocks of (4096, 2), (8192, 2) performs better than others. When chunks =
(32768,2), reading sub-blocks of (32768, 2) and (65536, 2) performs better than
others. Where chunks = (4096, 2) goes the same way as chunks = (32768, 2),
because (32768, 2) is an integer multiple of (4096, 2). When chunks are set up
largely, the performance of reading small sub-blocks will be sacrificed because it
needs to shred the whole chunk of storage. The scheme of chunks = (32768, 2)
performs worst in reading sub-blocks smaller than (32768, 1). The four columns
of FAST data respectively represent four polarizations. The relation between
the polarizations in calculation is lower than that of the rows, so the connection
between columns is not the main concern. Combining the curves of each scheme,
we choose the schemes of chunks = True as the best strategy.

4.4 HDF5 Performance with MPI

Selecting the most suitable chunks scheme, we apply it to three main algorithms
in pipeline for evaluation. The three algorithms are used for flow calibration,
bandpass correction and RFI marking. The RFI marking uses the classic algo-
rithm SumThreshold. Figure 7 shows the comparison results in FITS format,
HDF5 format, and MPI-based HDF5. It illustrates performance gaps among the
FITS-based method, HDF5-based method and parallel hdf5-based method.



670 Y. Ji et al.

Fig. 6. HDF5 reading performance for
different chunks storage strategies

Fig. 7. Performance comparisons of
different strategies applied to the three
algorithms

In three modes, three algorithms are implemented respectively to record the
time. The time of HDF5-based is slightly less than that of FITS in three algo-
rithms, but the extent of the improvement is not obvious. There was a significant
improvement with a data file is operated in parallel based on MPI. In the exper-
iment, there are 4 processes working simultaneously (all four cores of the CPU
in the experimental environment are fully operational). In flux calibration, the
speed of HDF5-based with MPI driver is 4.60 times faster than that of FITS-
based; in bandpass calibration, the speed of HDF5-based with MPI driver is 4.79
times faster than that of FITS-based; in Sumthreshold, the speed of HDF5-based
with MPI driver is 5.34 times faster than that of FITS-based. As experimental
environment configuration is limited, this paper only implements four processes
to work simultaneously. While the field environment will achieve a larger amount
of calculation. This paper shows that the performance has been improved in
existing experimental environment.

5 Conclusion and Future Work

In view of the problem that FITS format cannot meet the performance require-
ments of FAST neutral hydrogen data pipeline, this paper proposes the method
of using HDF5 as an intermediate format to optimize data I/O. We propose the
efficient file format conversion scheme, in which we use the dataset of HDF5
to store the data in FITS’s binTables, and use the attributes of HDF5 to store
FITS variables in form of 〈key, value〉. In addition, we implement the workflow
engine for extragalactic HI data pipeline of FAST. HDF5 format performs bet-
ter than FITS in the pipeline. Without any drivers, HDF5’s performance is 2.1
and 2.5 times as that of FITS in reading and writing respectively. Furthermore,
we improve the performance of HDF5 through chunks storage and MPI driver,
and improve the performance of flux calibration, bandpass correction and RFI
marking by 4 times, 5 times and 6 times respectively.

In addition, the strategies of converting FITS to HDF5 may also work well
with other telescope pipelines to improve I/O performance. At the same time,
the MPI driver of our approach can support the distributed system conveniently.



HDF5-Based I/O Optimization for Extragalactic HI Data Pipeline of FAST 671

Acknowledgement. This work is supported by the Joint Research Fund in Astron-
omy (U1731125, U1731243, 11903056) under cooperative agreement between the
National Natural Science Foundation of China (NSFC) and Chinese Academy of Sci-
ences (CAS), the National Natural Science Foundation of China (11573019). BZ is
supported by Open Project Program of the Key Laboratory of FAST, NAOC.

References

1. Anderson, K., Alexov, A., Baehren, L., Griessmeier, J.M., Renting, A.: LOFAR
and HDF5: toward a new radio data standard. Astron. Data Anal. Softw. Syst.
XX 442, 53–56 (2010)

2. Bacon, R., et al.: The second-generation VLT instrument muse: science drivers and
instrument design. In: Proceedings of SPIE - The International Society for Optical
Engineering, pp. 1145–1149 (2004)

3. Ballester, P., et al.: Data reduction pipelines for the very large telescope. Proc.
SPIE - Int. Soc. Opt. Eng. 22(2), 85–98 (2006)

4. Chen, Y., Winslett, M., Yong, C., Kuo, S.W.: Automatic parallel I/O performance
optimization in Panda. In: Proceedings of Annual ACM Symposium on Parallel
Algorithms and Architectures, pp. 108–118 (1998)

5. Davis, L.E.: An overview of the ALMA pipeline system. In: Astronomical Data
Analysis Software and Systems XVIII ASP Conference Series, vol. 411, p. 306
(2009)

6. Davis, L.E., Glendenning, B.E., Tody, D.: The ALMA prototype science pipeline.
Astron. Data Anal. Softw. Syst. XIII 314, 89 (2004)

7. Folk, M., Heber, G., Koziol, Q., Pourmal, E., Robinson, D.: An overview of the
HDF5 technology suite and its applications. In: EDBT/ICDT Workshop on Array
Databases, pp. 36–47 (2011)

8. Fridman, P.A., Baan, W.A.: RFI mitigation methods in radio astronomy. Astron.
Astrophys. 378, 327–344 (2001)

9. Group, H.: The board of trustees of the University of Illinois: “introduction to
HDF5” (2006). http://web.mit.edu/fwtools v3.1.0/www/H5.intro.html

10. Yan, J., et al.: Optimized data layout for spatio-temporal data in time domain
astronomy. In: Ibrahim, S., Choo, K.-K.R., Yan, Z., Pedrycz, W. (eds.) ICA3PP
2017. LNCS, vol. 10393, pp. 431–440. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-65482-9 30

11. Ma, X., Jiao, X., Campbell, M.T., Winslett, M.: Flexible and efficient parallel
I/O for large-scale multi-component simulations. In: International Parallel and
Distributed Processing Symposium (2003)

12. Madhyastha, T.M., Reed, D.A.: Exploiting Global Input/Output Access Pattern
Classification. In: Supercomputing, ACM/IEEE Conference (1997)

13. Masui, K., et al.: A compression scheme for radio data in high performance com-
puting. Astron. Comput. 12, 181–190 (2015)

14. McMullin, J.P., et al.: CASA architecture and applications. In: Astronomical Data
Analysis Software and Systems XVI, Vol. 376 (2007)

15. Nan, R.: Five hundred meter aperture spherical radio telescope (FAST). Sci. China
49(2), 129–148 (2006)

16. Pence, W.D., Chiappetti, L., Page, C.G., Shaw, R.A., Stobie, E.: Definition of the
flexible image transport system (FITS), version 3.0. Astron. Astrophys. 524, 10
(2010)

http://web.mit.edu/fwtools_v3.1.0/www/H5.intro.html
https://doi.org/10.1007/978-3-319-65482-9_30
https://doi.org/10.1007/978-3-319-65482-9_30


672 Y. Ji et al.

17. Price, D.C., Barsdell, B.R., Greenhill, L.J.: HDFITS: porting the FITS data model
to HDF5. Astron. Comput. 12, 212–220 (2015)

18. Luo, G., et al.: HyGrid: a CPU-GPU hybrid convolution-based gridding algorithm
in radio astronomy. In: Vaidya, J., Li, J. (eds.) ICA3PP 2018. LNCS, vol. 11334, pp.
621–635. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05051-1 43

19. Rodrigues, J.E., Rodriguez Bezos, J.E.: A graph model for parallel computation.
Massachusetts Institute of Technology (1969)

20. Sanders, P.: Asynchronous scheduling of redundant disk array. IEEE Trans. Com-
put. 52(9), 1170–1184 (2000)

21. Bardeau, S., Pety, J.: CLASS: continuum and line analysis single-dish soft-
ware, a GILDAS software. https://www.iram.fr/IRAMFR/GILDAS/doc/html/
class-html/. Accessed 21 Nov 2006

22. Schaaf, R., Brazier, A., Jenness, T., Nikola, T., Shepherd, M.: A new HDF5 based
raw data model for CCAT. Eprint Arxiv (2014)

23. Smith, S., Dunning, A., Bowen, M., Hellicar, A.D.: Analysis of the five-hundred-
metre aperture spherical radio telescope with a 19-element multibeam feed. In:
IEEE International Symposium on Antennas and Propagation, pp. 383–384 (2016)

24. Swinbank, J.D., et al.: The lofar transients pipeline. Astron. Comput. 11, 25–48
(2015)

25. Thakur, R., Gropp, W., Lusk, E.: Data sieving and collective I/O in ROMIO. In:
Symposium on the Frontiers of Massively Parallel Computation (1999)

26. Wells, W.D., Greisen, E.W., Harten, R.H.: FITS-a flexible image transport system.
Astron. Astrophys. Suppl. Ser. 44, 363 (1981)

27. Wu, C., et al.: DALiuGE: a graph execution framework for harnessing the astro-
nomical data deluge. Astron. Comput. 20, 1–15 (2017)

28. Zichao, Y., et al.: An energy efficient storage system for astronomical observation
data on dome A. In: International Conference on Algorithms and Architectures for
Parallel Processing, pp. 33–46 (2015)

https://doi.org/10.1007/978-3-030-05051-1_43
https://www.iram.fr/IRAMFR/GILDAS/doc/html/class-html/
https://www.iram.fr/IRAMFR/GILDAS/doc/html/class-html/

	HDF5-Based I/O Optimization for Extragalactic HI Data Pipeline of FAST
	1 Introduction
	2 Related Work
	2.1 Data Format
	2.2 Pipelines Introduction
	2.3 File I/O

	3 HDF5-Based I/O Optimization in Pipeline
	3.1 Transformation and Mapping from FITS to HDF5
	3.2 HDF5 Optimization Strategies
	3.3 The Implementation of FAST Pipeline
	3.4 Functional Module of the Pipeline

	4 I/O Performance Evaluation
	4.1 Efficient Data Format Conversion
	4.2 FITS and HDF5 Reading-Writing Comparisons
	4.3 HDF5 Performance with Different Chunks
	4.4 HDF5 Performance with MPI

	5 Conclusion and Future Work
	References




